Co-assembly of block copolymers and nanorods in ultrathin films: effects of copolymer size and nanorod filling fraction.

نویسندگان

  • Elina Ploshnik
  • Asaf Salant
  • Uri Banin
  • Roy Shenhar
چکیده

Two-dimensional, hierarchical assemblies of nanorods were obtained by exploiting the structures afforded by block copolymers in ultrathin films. Under the appropriate conditions, the nanorods segregate to the film surface already upon casting the composite film, and organize with the block copolymer through phase separation. In this paper we compare the structures formed by CdSe nanorods of three different lengths and two polystyrene-block-poly(methyl methacrylate) copolymers with different nanorods/copolymer ratios, and study the temporal evolution of the structure in each case. It is found that the initial morphology of the film largely dictates the resulting structure. The combination of short nanorods and/or short copolymers is shown to be more prone to morphological defects, while assembling long nanorods with long copolymers leads to highly organized nanorod morphologies. These phenomena are explained by a combination of kinetic and thermodynamic factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers.

The understanding of size-dependent properties is key to the implementation of nanotechnology. One controversial and unresolved topic is the influence of characteristic size on the glass transition temperature (T(g)) for ultrathin films and other nanoscale geometries. We show that T(g) does depend on size for polystyrene spherical domains with diameters from 20 to 70 nm which are formed from ph...

متن کامل

Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimi...

متن کامل

Surface-induced phase transitions in ultrathin films of block copolymers.

We study theoretically the lamellar-disorder-lamellar phase transitions of AB diblock and tetrablock copolymers confined in symmetric slitlike pores where the planar surface discriminatingly adsorbs A segments but repels B segments, mimicking the hydrophobic/hydrophilic effects that have been recently utilized for the fabrication of environmentally responsive "smart" materials. The effects of f...

متن کامل

Collective alignment of nanorods in thin Newtonian films†

In this paper, we provide a complete analytical description of the alignment kinetics of magnetic nanorods in magnetic field. Nickel nanorods were formed by template electrochemical deposition in alumina membranes from a dispersion in a water–glycerol mixture. To ensure uniformity of the dispersion, the surface of the nickel nanorods was covered with polyvinylpyrrolidone (PVP). A 40–70 nm coati...

متن کامل

Study of Fluorine-Containing Block Copolymers Designed for Top-Down and Bottom-Up Lithography

A new series of fluorine-containing block copolymers of poly(styrene-block-2,2,2-trifluoroethyl methacrylate) (PS-b-PTFEMA) and poly[styrene-block-(methyl methacrylate-co-2,2,2-trifluoroethyl methacrylate)] (PS-b-(PMMA-co-PTFEMA)), which can be used for both top-down and bottom-up lithography, were developed. Integrated patterns such as “dots in lines” were successfully obtained through combina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 38  شماره 

صفحات  -

تاریخ انتشار 2010